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Abstract--The drag of monodisperse droplets moving in an infinite droplet chain is studied numerically 
and experime_ntally. The _droplet chain produced by a vibrating orifice generator is composed of an infinite 
number of droplets with the same diameter ap and a constant spacing dr. The droplets move with a velocity 
u 0 along the axis of a cylindrical tube of radius R. In the experiments the velocity decrease of the droplets 
is measured by a laser Doppler velocimeter. It is shown that near the wall the droplet chain produces the 
same flow field as a cylindrical rod with a diameter of ap exp(-f), where f is a function of the velocity 
u 0, the droplet diameter ap, the spacing of the droplets dr and the radius of the tube R. With these 
assumptions the Navier-Stokes equations have been solved numerically. Drag coefficients CD have been 
computed for Reynolds numbers from 20 to 100. The Reynolds number is based in this case on the droplet 
velocity u0 and the droplet diameter ap. The dimensionless spacing dv/op was varied between 2 and 12 
and the dimensionless tube diameter 2R/ap ranged from 20 to 1000. In addition, numerical results are 
presented for the radial coordinate 6 of the boundary, at which the flow becomes essentially parallel to 
the tube, for the axial velocity at this boundary uz(z, 5) and for the maximum value of the velocity along 
the axis of symmetry uz(z, 0)m~x. The results of the numerical calculations are compared with the 
experiments. 

1. I N T R O D U C T I O N  

For  the theoretical description of  multiphase flow the interaction between droplets and the 
surrounding gas is of  great interest. The flow around single spheres has been treated in a number  
of  different works (e.g. Stokes 1851; Oseen 1910; Rimon & Cheng 1969). The extension of  the 
problem to two spheres has been treated, for instance, by Lee (1979), Tsuji et al. (1982) and by 
Pei & Hayward  (1983). In the present paper the flow field of  an infinite number  of  spheres moving 
along the centerline of  a cylindrical tube is studied numerically. The drag coefficients obtained from 
these calculations have been compared with new experiments, which were performed with droplet 
chains of  very high uniformity in droplet size and spacing. The droplet chains were produced with 
a vibrating orifice droplet generator, as described by Berglund & Liu (1973) and KSnig et al. (1986). 
Such droplet systems provide precise and highly reproducible conditions for the investigation of  
droplet behavior. They may  be used, for example, to study evaporation rates (Anders & Frohn 
1984) or the interaction between droplets or between droplets and solid surfaces. Possible space 
applications of  monodisperse droplet chains have been presented by Muntz et al. (1984). For  the 
evaluation of  experiments with droplet chains it is desirable to have a detailed knowledge of  the 
flow field around the droplets. 

2. BASIC E Q U A T I O N S  

A sequence of  spheres with diameter trp is moving along the axis of  a cylindrical tube of  radius 
R. The spacing dv between the droplets is constant. For these conditions one has an incompressible 
steady flow field with cylindrical symmetry and periodicity dp in the axial direction. The continuity 
equation and the Navier-Stokes equations for the dimensionless velocity components ~, and ~7~ and 
the dimensionless pressure ,6 may be written in cylindrical coordinates ($, ~) as 

oa, oa, a,=0, [1] 

17 z +tT, = O~ Re ~-~+O~-~+~0-~ g ' '  [2] 
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. C~t~r _ C~t~, • 2 /'c ~2 c ~2 I c~ I) 
u,~- i +u,~- = ~ +~ee~-~+~-~ - t  ? ~  : / ~ , .  [3] 

The problem is considered in a coordinate system in which the spheres are at rest and the tube 
is moving with velocity u0, as shown in figure 1. The boundary conditions are 

t2 ,=O and t ~ = O  at . ~ 2 + F 2 = 1 ,  [4] 

dt2----£'=O and ti,=O for ~ = 0  and [z T I> 1, [5] 
tgf 

and 

~'(~ +dv'~)= ~2( avdv, F) [6] 

t~2= l  at f = / ~  [8] 

t~r=0 at ~=/~.  [9] 

Using the density p and the kinematic viscosity v the following dimensionless quantities have 
been introduced: 

u~ u~ p 2z 2r 2R Uo av 
6 ~ - - - ,  if,-=--, / ~ -  2 ,  z - - - ,  r -= - - ,  / ~ -  , Re--- 

/d 0 U 0 ( a t / 0 )  O'p O'p O'p V 

The dimensionless stream function ~ and the vorticity :3 are then given by 

d ~  = :t~, d~ - ~ff, d£ and o~ = ~ ~:" 

Uo 

i 

a. 

It- l ~ l  I 

i ¢" t t :  - - 6 - - ~  , i z=_ d...~_ P 
2 

Figure I. Geometry and coordinates. 
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Due to the boundary conditions the flow field may be divided into two regions. One region, which 
is called the inner domain, in which the flow field is strongly influenced by the presence of  the 
spheres and another region close to the wall, in which the flow is essentially parallel to the axis. 
This region is called the outer domain. The actual position of  the boundary between both regions 
is unknown a priori. In the outer domain one has 

~az 6: 
~,=0, -~-=0 and ~-~=0. 

Equation [2] can therefore be written as 

a2ff, 1 &Tt 
~2 +~-~---0. 

From this equation and the boundary condition [8], one gets for the outer domain the solution 

~Tt (~, f)  = 1 - ~(ln ~ - In f)  [10] 
with the constant 

ti l l  
\ ~r/]outer  domain 

For the case where the droplet chain is replaced by a cylindrical rod with diameter ap one would 
get 

1 
= ln---~" [12] 

For the inner domain the continuity equation and the Navier-Stokes equations [1]-[3] have to 
be solved numerically. The boundary conditions [4]-[7] are still valid, the boundary conditions [8] 
and [9] on the inner surface of  the tube however have to be replaced by new boundary conditions 
at the boundary between the inner and outer domain. Here one has 

0tTt 
f - ~ - = / ~  at ~ > ~  [13] 

and 
a , = 0  at f ~ > L  [14] 

where ~ = 26/trp is the dimensionless radial coordinate for the boundary between the inner and 
outer domain. The conditions [13] and [14] are also valid throughout the whole outer domain. As 
the actual position of  this boundary is not known a priori, the numerical calculation has to be 
performed in the whole inner domain and in part of  the outer domain. 

In the system [1]-[9] one has three dimensionless parameters. By introduction of  the following 
new dimensionless quantities, 

tit 

fir 

P- :V' 

l~e -= 1~ • l~e, 

d¢; 
d ~  - ~ .  d f  - f~,d~ =-~- ,  

oa, oat 

[15] 
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the problem is reduced to a system with two parameters. Hence the dimensionless continuity 
equation and the Navier-Stokes equations are given by 

~a, ~a, at=0, 
-~+T~ +7 

3a, .3a, 3p + ~ {32 3 2 1 3) az~+u,-~= 3e ~ + ~ + ? ~  a~' 

~ 3~, 3~, 3ff 2 { 3  2 3 2 1 d 1 ' ~ .  ~,~+a,~= ~ + ~ S ~ + ~ + ~  #)u,; 

with the boundary conditions 

~2=0, 

3~z O, 3~ 

and 

[16] 

[17] 

[181 

if,= 0 at 32 + ~2 = 1, [19] 

~r=0  for ~ = 0 ,  131>1, [20] 

[21] 

[221 

are also functions of these dimensionless parameters. The quantity 

\ Or/,>~ 
is a characteristic velocity and the drag D is defined by 

D =(2rrrdvla~r),>6, [29] 

[28] 

_.2_~ \~P } ~pt'~ Op 

~ 3~2 
r ~ = 1, ur = 0 at ~ >/S. [231 

The solutions of these equations are governed by only two independent parameters, namely by 
l~e and dp/av, instead of three parameters as in the system [1]-[3], with the boundary conditions 
[4]-[7], [13] and [14]. Thus, each quantity is a function of these two parameters. For the extension 
of the inner domain one gets 

ff = FI (dr,  I~e). ktrv [24] 

The velocity at this boundary can be written as 

~z(3' ~') = F2 (dr '  l~e) " kay [25] 

The maximum of the velocity on the axis of symmetry, 

aAe, 0)~= = F3 (~, ~e~, [261 
\~P } 

and the drag coefficient, 
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where/~ is the dynamic viscosity. From [27]-[29] it follows that 

16 dp 
F4 = R,~e ep" 

The functions El, F2 and F3 have to be determined numerically. 

221 

[30] 

3. NUMERICAL CALCULATIONS 

For the numerical calculations the stream function ~ and the quantity ~" = c3/f have been 
introduced. It follows that 

p2sin20 I ~  ((~-~0)-~0 ((~-~--)] = Ree ~--~20 (ffasin30 ~__~) +c~(  2 O / - 2 " 3  r' 0~'~ ~ee~--~ k p s,n ~-0)  [311 

and 

It5 si--n-o ~-~ + ts: sin 0-3--0 + sin 0 . ( =  0. [32] 

Here the spherical coordinates (ts, 0, q~) have been used, where t5 = (f2 + £2)~/2 is the dimensionless 
radial coordinate. The boundary conditions can be written as 

a( 
~ = 0  and ~-~=0 at 0=0 or O=n, 

=0 and ~ = 0  at t5=l ,  

f f=f fM and (sin0 ~30~+c°s0~0)(~'t52sin20)=0~ at 

( J (~__  dP '\~ -2 a r c t a n I ~ l l = f f ( x f ( ~ _  Iff -r ~-~p) + r ,  f dPY + 1;2, 

and 

s in  0 = rM, 

\ ePll 

~p/ ~P/ _ _ _ 

\ ~rPll 

For the numerical calculations the outer radius ~M of the domain of calculation and the 
corresponding value of the stream function ~M have to be chosen. This radius ~M has to be outside 
of the inner domain, this means the numerical calculations are performed in the whole inner domain 
plus part of the outer domain. This is necessary to determine the a priori unknown value of the 
radial coordinate c5 of the boundary between the inner and outer domain. The values for ~, ~(:~, o ~) 
and ~=(:~, 0)m~x are obtained from the results of the numerical calculations for ~, t/=(:~, 6) and 
a=(f, 0)m~x by division of these values by ~ = [-(f2]e=r~. The Reynolds number l~e is given by 

l~e = R e . / ~ .  

The natural logarithm of the dimensionless radius 

s = ln~ 

was introduced, in order to get in the t5-0 plane a grid with narrow meshes close to the surface 
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of the sphere. The derivatives are given by 

d = e _ ~ d  82 (d2 t~) 
ap ~ and ~ = e - ~ a ~  2 a ~  ds " 

According to Roache (1976) and Gosman et al. (1969) the corresponding difference equation can 
be written as 

and 

~i,j  = cE~i+ l,j "~ Cw~i--1, j  -~ CN~i,j+ l "~- CS~ ' , j -  I "JI- exp(4s) ~ j  
CE + CW + CN + CS 

[(AE + BE exp(si))(/+ i.j + (Aw + Bw exp(si))(,_ ~.j 
+ (As + BN exp(si))~i.y+ l + (As + Bs exp(si))(,.j_ l] 

~'J = [(AE + Aw + AN + As) + (BE + Bw + By + Bs)exp(s~) ]" 

Here the following abbreviations have been used: 
e-O.SAs 

CE = AS 2 sin 20j' 

e+0.SAs 

Cw - As 2 sin20j' 

1 
CN = A0 2 sin 0j sin(0j + 0.5A0)' 

1 
Cs = A0 2 sin 0j sin(0j - 0.5A0)' 

16 
BE = Ree sin Oj e ~'5~ , 

1 6  
Bw = Ree sin 0j e-"5~ , 

and 

B N 

A E = 

Aw = 

A N = 

16 sina(0j + 0.5A0) As 
Re sin 2 Oj AO' 

16 sin3(0j- 0.5A0) As 

Re sin 2 0j A0' 

oL+,.~_, + ~ ._ , -  ~,+,..,- ~,..,), 
( ~ , - - l , j + l  ' ~  ~i,j+,-- ~i--l,j- 1 - -  ~i,j--1), 
(# ,+ , , j+ ,  + ¢ , , + , , j -  ¢, ,_, , j+,  - ~ ,_ , , j )  

.4s = ( ~ , _  , . j _ ,  + , , _  ,, j  - ~,, + ,,~_, - ¢7, + , . j ) .  

The domain of calculation is bounded in the f-direction by f = 0 and f = fM, and in the 
f-direction by $ =- (dp / t rv )  and ~ = +(dv/trp). The calculations are performed in spherical 
coordinates, therefore the values along these straight boundaries have to be calculated from values 
at nodes inside the domain of calculation. This means, for example, that the values at the upper 
bound f = +(dv/ap) are interpolated from values inside the domain of calculation and values 
outside the domain of calculation. The latter can be calculated due to the periodicity of the problem 
from values inside the domain at the lower bound f = -(dp/trv). Along the upper and lower 
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boundary at z = +_-(dplap) the quantities ~ and ~" have been expressed as linear functions in :~ by 

=f~ (e ~) + A ( e  ~) -r- - 
apj  

and 

The functions 

f i ( r  2) = f / ( ~ )  = ~ vi, j m j _ 4 ( ~ )  , i = 1, 2, 3, 4, n = 8 
j= l  

are third-order spline functions [as described, for instance, by Feng (1978), Curry & Schoenberg 
(1966) and deBoor (1978)] with coefficients v~,j which have been determined by the least-squares 
method. Here the following abbreviations have been used: 

A l s + 4  
~ ( z ) - ~  ~ /~s , . Iz  - x ~ l  3, s = - 3 ,  - 2 .  - 1  . . . .  ,n  - 4 ,  

- -  p ffi S 

4~ 

and 

s+4 
n,(z.) = ]-[ (z, - zk). 

k~s 
k#p 

The upper and lower boundary was divided into n Sections. The radial coordinates of the nodes 
of intersection are denoted by fk. Along the boundary f = fM a linear extrapolation from values 
inside the domain of calculation was sufficient. 

4. NUMERICAL RESULTS 

The results of these calculations are shown in figures 2-4, where the quantities 6, fi~(~, 6) and 
fi~(~, 0)max are plotted against the Reynolds number P~e for different dimensionless spacings dp/trp. 

As the variation of the flow quantities at the boundary between the inner and outer domain is 
continuous and smooth one has to define the location of this boundary. In analogy to the 
definitions of boundary layer thickness introduced in boundary layer theory a quantity 

((~)max - -  ( ' ~ O ~ ) m ~ . )  
o~(r) = (ro,~)av [33] 

is used. The boundary between the outer and inner domain is then defined by F = const, where 

:~(e) = 0.05. 

I 0  

p / ¢ p  • 12 

3 
2 

I I I I I IIII I I I I t Illl 

I 10 100 

g 

Figure 2. Extension of ~" of the innner domain as a ~nction of droplet spacing dp/ap and Reynolds 
number Re. 
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Re 

Figure 3. Velocity component a, at the boundary be- 
tween the inner and outer domain as a function of 

droplet spacing dp/~p and Reynolds number l~e. 

p / ( r p - 1 2  
o 3 

3 

O I I i , ,  , L ~ I  2 ~ I t I I I I I  

1o Ioo 

Re 

Figure 4. Maximum value of the velocity component z2~ 
along the axis of the cylinder as a function of droplet 

spacing dp/trp and Reynolds number l~e. 

Usually velocities are used to define a boundary layer thickness. The velocity components are 
obtained by differentiation of the stream function 0. As the numerical error is increased by this 
procedure the quantity fo3, instead of the velocity components ~z and a,, was used for the definition 
of the boundary between the inner and outer domain. In figure 5 some typical fN-distributions 
are plotted over ~ for three different radii. One can see that the for increasing values of ~ the value 
(~O3)max decreases and the value (~O3)min increases, whereas the average value 

(:rp I +(dp/.p) 
= - -  (~) d ~  (~o3)av 2dp j-(~/op) 

is almost constant. Furthermore, it can be shown that along the line F = I, 

(~C3)mi, ~ 0 and (~O3)max ~ alp. 
o'p 

Thus, one gets 

~(l)~ d~ 
o'p 

The entire flow field is determined when the quantity N is known. Replacing f by t5 ~ in [10], one 
gets 

1 
/~ = , [34] 

ln R +  f ( a ~ '  A . R e )  

where  the  f u n c t i o n  f is g iven  b y  

[351 

13 ll- 
r - [  117 I T I  I T f  I'T I T r  I-i" 1 T l ' n  'IT£ r-[ " lTr  17" I 17 l T r l T r  r r  IT l ' l - r l  "f= 2./, 

Figure 5. Typical distribution of the quantity g~ in the if-direction for different radii f. This quantity is 
used to define the boundary between the inner and outer domain. 
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The quantity ~ and the function f are plotted in figures 6 and 7. Comparing [12] and [34] one 
realizes that a droplet chain consisting of droplets with diameter ap produces the same flow field 
in the outer domain as a cylindrical rod with a diameter ~p. e x p ( - f ) .  

From the numerical calculations one obtains the velocity distribution around the sphere. One 
can calculate the drag coefficient either using [30] or by integrating the pressure and shear stress 
resulting from the velocity distribution along the surface of the sphere. The difference between both 
methods was in all cases <4%. This deviation was obviously determined by the accuracy of the 
numerical calculations. 

A typical velocity plot obtained via the numerical calculations is shown as a vector plot in figure 
8. The corresponding velocities in the axial direction fiz are plotted in figure 9 for different radial 
coordinates for the periodicity interval -dp/tr v < z < dp/Gp. The coordinate F = 2r/trp is measured 
from the centerline of the cylindrical tube, as indicated in figure 1. 

The drag coefficient of a sphere is usually defined as 

D 
C D ~ - - .  

7C ^ .  2 _ 2  -~pUoOp 

I< 

0 . 3  

0 . 2  

0.1 

2 R  ~ -20 ' • . ,  Re - 20 

\ - -  - ~ e - ~ O  

". " - . 2 " - .   1oo 

1ooo ~ ~ ~ ~  ~--~.  _~..-_ 
~ - - . . = .  ~ ~ - " " ' -  -......." --...-. 

" ' .--- ~ ._..."-"~-=_ ~ . 

~ " - - " ~  . a . . . ~  .......~ 

I I I I I 

0 2 4 6 8 10 

d p / O ' p  

F i g u r e  6. Q u a n t i t y  X = F(t~Uz/0/=)out©r domain as  a f u n c t i o n  o f  d r o p l e t  s p a c i n g  dp/Gp a n d  R e y n o l d s  
n u m b e r  Re.  
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3 - "  

7 - 5  

2 4 

3 

d p / o ~  - 3 

E ,  - 2 . z 2  

1 1.6 

1.2 

1.0 

- 3  - 2  -1  0 1 2 3 

Figure 9. Velocity component at in the 
periodicity interval - 3 < £ < 3 for 

different radii ?. 
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" , , ~ , ~ j d  p / O'p = 2 

I I I I I  
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x \  

~%.x, 

Oseen  119101 " \ x  

Stokes 118511 " X .  ~ 8  

\ . \  ~-"~,~12 

\ .  
\ .  

, * , , , , , , l  . . . . .  I I I I  i% i 

1 10 

Re" 
Figure 10. Comparison of the drag coefficient of single 
droplet3 in an undisturbed parallel free stream with the drag 
coefficient of a droplet in an infinite chain. For the calcu- 
lation of c* and Re* the velocity U = u,(z, 0)m~ was used. 

Using [28] and [29] the drag coefficient can be written as 

16 dp .~. [36] 
CD = R e  O'p 

In order to compare the results of the numerical calculations with results for single spheres a 
new definition of the drag coefficient 

D 

_r r2_2  ~ p t J  Op 

is introduced, where 

U = u,(z, O)m~ 

is the maximum of the velocity along the axis of symmetry. The corresponding Reynolds number 
is defined by 

Re* = Uop 
v 

In the case of an infinite chain of spheres, each sphere is moving in a flow field influenced by 
the preceeding sphere. In this flow field the velocities are in general not parallel to the axis and 
not constant along the radial coordinate. Therefore a direct comparison of the drag coefficient of 
a single sphere in a parallel flow and the drag coefficient of a sphere in an infinite droplet chain 
is not possible. However, for increasing values of dp/ap the drag coefficient c* should approach 
the drag coefficient of a single sphere. This is confirmed by the results plotted in figure 10. 

5. E X P E R I M E N T S  

The theoretical results of the present paper have been compared with new experimental results 
obtained via measurement of the velocity of monodisperse droplets moving in a glass tube. The 

M.F. 14/2-~G 
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droplets were generated using a vibrating orifice droplet generator, which is shown schematically 
in figure 11. Liquid is forced through a small orifice with a constant feed rate l?. By appropriate 
choice of the driving pressure difference, which determines the feed rate, one obtains a laminar jet. 
This jet is excited by a piezoceramic disk with a frequencyfG. Within a certain range of excitation 
frequencies the laminar jet disintegrates into a monodisperse droplet chain of very high uniformity. 
The droplets all have the same diameter trp and the same spacing dp. The droplet diameter is given 
by 

= (  6~1/3 [37] 
tre k n f G ] "  

This relation results from the conservation of mass. In the experiments the droplet diameter was 
measured using a new light scattering technique, which evaluates the intensity distribution of the 
light scattered by the droplets. This technique has been described in more detail by K6nig et al. 
(1986). With this technique the droplet diameter could be determined with an accuracy of 2%. 

The average velocity of the liquid jet within the orifice, 

417 
uj = nd~' [38] 

is approximately equal to the velocity of the droplets u0, if one neglects expansion or contraction 
of the jet as well as any change in momentum due to the disintegration of the jet or the influence 
of external forces. Here d~ is the diameter of the orifice• The spacing between the droplets dp is 
a function of the frequency of excitation, the liquid feed rate and the orifice diameter. It is given 
by 

u0 
dp =fGG" [391 

A photograph of the droplet chain and the cylindrical tube is shown in figure 12. Due to the drag, 
the droplet velocity decreases along the axis of the tube. Therefore the droplet spacing decreases 
slightly. The variation in the value of dp from droplet to droplet is < 0.1%. For droplet velocities 
of approx, l0 m/s, used in the experiments of the present paper, the maximum velocity in the flow 
field between the droplets is in the range of 1-2 m/s. If one uses this value for a rough estimate 
of the Reynolds number one obtains for droplets with diameters of 100 #m Reynolds numbers of 
the order of 10. This means that there is no region, or only a very small one, of recirculating flow. 
The high uniformity of the droplet stream is maintained within a certain distance from the orifice. 
Therefore, the measurements can be performed only within a finite distance from the generator. 

The experimental setup for the determination of the droplet velocities is shown schematically in 
figure 13. The droplet chain produced by the droplet generator DG moves along the axis of a 
cylindrical tube of glass with radius R. At different distances x along the axis the droplet velocity 
u0 is measured with a laser Doppler velocimeter. The laser beam is split with a prism P. Both beams 
are brought into focus at the centerline of the tube by lens L1. At this point the probe volume 
is formed by the intersection of both beams. The intensity of one beam is registered by the 
photodiode D1, whereas the other beam is trapped by a beam stop BS. The Doppler signal of single 
droplets is collected by lens L2 and registered by the photodiode D2. As long as the droplet chain 
is monodisperse and regular one obtains from these two detectors periodical output signals, as 
shown in figure 14. The signal of photodiode D1 is used to survey the uniformity of the droplet 
chain. Only for a monodisperse droplet chain with constant droplet spacing is a periodic signal 
obtained. 

The velocity of the droplets can be determined from the Doppler signal using the relation 

,~,L(n - -  l )  
u0 = , [40] 

• ? 
2 s in  -~" tp 

where ~'L is the wavelength of the laser light, 7 is the angle of intersection of the two laser beams 
and tp is the time elapsed between n successive maxima or minima in the Doppler signal. The 
droplet velocity at a certain distance x has been determined by evaluating up to 15 successive 
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Liquid feed 
AC-Signol 

Orifice disc/ ~ 0 p  Piez°eeleC~iic 

Figure 11. Schematic view of the 
droplet generator. 

Figure 12. Photograph of a monodisperse droplet chain on 
the centerline of a glass tube. 

Doppler signals recorded on a transient recorder. The dimensions of  the probe volume have to be 
chosen in such a way that at any time only one droplet is within the probe volume of  the laser 
Doppler velocimeter. Equations [38] and [39] were used to check the measured droplet diameters 
and velocities. 

Some experimental results are plotted in figures 15-17. In the experiments the velocity of  the 
droplets was measured at different locations along the axis of  the tube. The comparison of the 
numerical calculations with these experimentally determined velocity variations is shown in figures 
15 and 16. For these calculations it has been assumed that the drag coefficient is constant within 
intervals of  0.5 mm along the axis. The dashed lines in figures 15 and 16 show the velocity of  a 
single droplet with the same initial conditions in an unconfined flow field. In figure 15 the 
measurements and the theoretical predictions for four different initial velocities are plotted. The 
droplet diameter ap and dimensionless spacing dp/ap are practically constant for this figure. The 
influence of  the droplet diameter is shown in figure 16. Here the initial droplet velocity u 0 and the 
dimensionless droplet spacing dp/ap are kept constant. The agreement between the experimental 
results and the theoretical predictions is very good. For  larger droplet velocities a small deviation 

• D6 

2R~- 

Figure 13. Experimental setup for velocity measurements. The abbreviations are explained in the text. 
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D2 

Figure 14. Signals of  the photodiodes D1 and D2. The signal o f  photodiode DI is used to check the 
disintegration process. The signal o f  photodiode D2 represents the Doppler signals of  the droplets. 
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Figure 15. Droplet velocity u as a function of  the 
distance x from the generator exit for different initial 
velocities. The symbols represent the results of  the 
measurements:  - - - ,  numerical calculations for droplets 
in an infinite chain of droplets; - - - ,  results for a single 

droplet with the same initial velocity. 
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Figure 16. Droplet velocity u as a function of the 
distance x from the generator exit for two different 
droplet diameters. The symbols represent the results of  
the measurements:  - - ,  numerical calculations for 
droplets in an infinite chain of  droplets; - - ,  results for 

a single droplet with the same initial velocity. 
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Figure 17. Ratio of  the drag coefficient c o of a droplet in an infinite chain of  droplets and the drag 
coefficient ct~ of  a single droplet as a function of  the dimensionless droplet spacing dp/ trp .  The symbols 

represent the results of  the measurements:  - - ,  results of  the numerical calculations. 
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between experiment and theory is observed, which increases with the droplet velocity. This is due 
to the increasing influence of the pressure gradient within the tube. In the numerical calculations 
the pressure was assumed to be constant. 

The exact alignment of the droplet stream with the axis of the tube is very difficult. It has been 
observed that misalignment of the droplet streams leads to an increase in the drag. This may be 
an explanation for the fact that the measured velocities tend to be slightly below the values 
predicted by the numerical calculations. A comparison of the drag of droplets in an infinite chain 
of monodisperse droplets with the drag of a single droplet in an unconfined parallel flow shows 
a drastic decrease in drag for the droplets in the droplet chain. From this point of view a very 
satisfying prediction of the behavior of the droplets in our experiments has been obtained via the 
numerical calculations. 

In figure 17 the ratio of the drag coefficient Co of a doplet in an infinite chain of droplets to the 
drag coefficient CDs of a single droplet in an unconfined parallel flow is plotted vs the dimensionless 
droplet spacing dp/ap. One can see that the drag coefficient obtained in the experiments increases 
with increasing droplet spacing, as predicted by the numerical calculations. Within each set of 
measurements in figure 17 the orifice diameter dG and the radius R of the tube was constant. The 
dimensionless spacing dp/ap was changed by variation of the excitation frequency of the droplet 
generator. Under these conditions the droplet diameter and droplet spacing change according to 
[37] and [39]. 

6. CONCLUSIONS 

The purpose of the present investigation was the calculation of drag coefficients and the study 
of the flow field around an infinite sequence of spheres moving along a straight line. The solution 
has been obtained by dividing the flow field into two regions: the inner domain, where the flow 
is influenced strongly by the spheres; and the outer domain, where the flow is essentially parallel 
to the axis. In the outer domain the velocity distribution is the same as the distribution produced 
by a rod moving along the axis. The extension of the inner domain had to be determined by 
numerical calculations. It can be shown that for the range of parameters considered in the present 
paper, the inner domain is small compared to the tube diameter. Numerical calculations have been 
used to predict the decrease in droplet velocity in a monodisperse droplet chain obtained by a 
vibrating orifice droplet generator. It can be shown that the drag coefficient of droplets in an infinite 
droplet chain is up to an order of magnitude smaller than the drag coefficient of a single droplet 
in an unconfined parallel flow. The measurements are in good agreement with the numerical results. 
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